Journal of Organometallic Chemistry, 69 (1974) 377–381 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

REACTIONS OF BIS(PENTAFLUOROPHENYL)METHYLSILANE WITH ORGANOLITHIUM AND GRIGNARD REAGENTS

D. SETHI, R.D. HOWELLS and H. GILMAN

Department of Chemistry, Iowa State University, Ames, Iowa 50010 (U.S.A.) (Received September 11th, 1973)

Summary

Bis(pentafluorophenyl)methylsilane (I) reacts with primary alkyllithium and Grignard reagents to give high yields of the pentafluorophenylmetallic species.

 $(C_6F_5)_2SiMeH + 2 RM \rightarrow 2 C_6F_5M + R_2SiMeH$ (I) R = Me, n-Bu; M = LiR = Me, Et; M = MgX

The influence of steric factors upon the course of the reactions with a series of RLi and RMgX compounds including PhMgBr, i-PrMgBr and t-BuLi are considered.

Introduction

Previous work has shown that (perhaloaryl)diphenylsilanes [1, 2], (perhaloaryl)dimethylsilanes [3-5] and bis(perhaloaryl)methylsilanes [6] are cleaved by alkyllithium compounds forming a perhaloaryllithium compound and the corresponding silane resulting from nucleophilic attack on silicon. (Pentafluorophenyl)trimethylsilane reacts differently with n-BuLi giving 1-(trimethylsilyl)-4n-butyltetrafluorobenzene [7]. Grignard reagents in ether solution were found to be generally unreactive with (perhaloaryl)dimethylsilanes [4].

Results and discussion

Grignard reactions

Cleavage of one pentafluorophenyl group from silicon proceeded readily with a variety of Grignard reagents at 0° in THF or Et₂ O/THF solvent mixture (Table 1).

TABLE 1

Silane ^a (mmoles)	RM (mmoles)	Solvent/ temp/time	Derivatizing Agent	Products (% yield) ^b
(1)(5.0)	MeMgCl (10.0)	THF/0°/3h	ClSiMe ₃	(IV) (67), (II) (30)
(1)(5.0)	MeMgCl (10.0)	THF/0°/10h	ClSiMe ₃	(IV) (73), (II) (24)
(1)(5.0)	MeMgCl (10.0)	Et ₂ O (80) THE/0°/3b	ClSiMe ₃	(IV) (66), (II) (29)
(1)(5.0)	MeMgBr (10.0)	THF/0°/10h	ClSiMe ₃	(IV) (62), (II) (37)
(1)(5.0)	EtMgBr	THF/0° /20 min	ClSiMe ₃	(IV) (43)
(I)(10.0)	EtMgBr (20.0)	THF/0°/6b	ClSiMe ₃	(IV) (67)
(I)(5.0)	i-PrMgCl	THF/0°/3h	ClSiMe ₃	(IV) (48), (V) (42)
(I)(5.0)	i-PrMgCl	THF/0°/16h	ClSiMe ₃	(IV) (48), (V) (42)
(1)(5.0)	i-PrMgCl	THF/0°/6h	CO2	(III) (18) ^c
(I)(5.0)	(10.0) PhMgBr (10.0)	THF/0°/3h	ClSiMe ₃	(IV) (51), (IV) ^d (40–45)
(I)(5.0)	MeLi (10.0)	Et ₂ O/50°/1h	CO2	(III) (92) ^c
(1)(30.0)	n-BuLi (60.0)	Et ₂ O/-78°/1h	ClSiMe3	(IV) (76) ^c
(1)(5.0)	n-BuLi	Et ₂ 0/70°/1h	CO2	(III) (86) ^c
(1)(20.0)	(10.0) t-BuLi	Et ₂ O/78°/30 min	ClSiMe ₃	(IV) (21) ^e , (VII) (24) ^e
(VIII)(2.5)	(40.0) MeLi (5.0)	Et ₂ O/50°/1h	CO2	(IX) (86) ^c
(11)(10.0)	MeMgCl	THF/0°/10h	ClSiMe3	(IV) (72)
(11)(10.0)	EtMgBr	THF/0°/10h	ClSiMe ₃	(IV) (37)
(II)(5.0)	i-PrMgCl	THF/0°/10h	ClSiMe ₃	(IV) (0), (II) (98)
(11)(10.0)	PhMgBr	THF/0°/10h	ClSiMe ₃	(IV) (10-15)
(II)(10.0)	MeLi	Et ₂ O/50°/1h	CO ₂	(III) (91) ^c
(II)(10.0)	n-BuLi (10.0)	Et ₂ O/70°/1h	CO2	(111) (80) ^f

CLEAVAGE OF PENTAFLUOROPHENYL-SUBSTITUTED SILANES WITH GRIGNARD REAGENTS AND ORGANOLITHIUM COMPOUNDS

^a(I) = $(C_6F_5)_2$ SiMeH; (II) = C_6F_5 SiMe₂H; (III) = C_6F_5 CO₂H; (IV) = C_6F_5 SiMe₃; (V) = C_6F_5 Si(i-Pr)MeH; (VI) = C_6F_5 Si(Ph)MeH; (VII) = p-t-BuC₆F₄Si(t-Bu)MeH; (VIII) = (p-t-BuC₆F₄)₂SiMeH; (IX) = p-t-BuC₆F₄-CO₂H. ⁶GLC yield based on starting compound RM. Samples of (II) and (IV) were isolated and found to have identical IR and ¹H NMR spectra to those reported [2, 14]. ^cIsolated yield based on RM compound. (VI); B.p., 93°/0.8 mm, $n_2^{D_3}$ 1.5048. ¹H NMR: δ 0.76 ppm (doublet of triplets, J(CH₃, H) = 4.2 Hz, J(o-F, CH₃) = 1.2 Hz, 3 H), δ 5.08 (multiplet, 1 H), 7.40 ppm (multiplet, 5 H). IR: 2175 cm⁻¹ (Si-H); 1644, 1518, 1466 cm⁻¹(C₆F₅). Molecular ion: m/e 288 (mol. wt. 288). Found: C, 54.43 H, 3.28; F, 32.64. C₁₃H₉F₅Si calcd.: C, 54.16; H. 3.15; F, 32.95%.) ^eIsolated yield based on starting silane. ^IRef. 4.

 $(C_6F_5)_2SiMeH + RMgX \rightarrow C_6F_5MgX + C_6F_5Si(R)MeH$

 $C_6F_5Si(R)MeH + RMgX \rightarrow C_6F_5MgX + R_2SiMeH$

Cleavage of the remaining pentafluorophenyl group was much more difficult, and was not observed in the case of i-PrMgCl. Ease of cleavage of (pentafluorophenyl)-dimethylsilane [(II), Table 1] by Grignard reagents was shown to be in the order MeMgCl > EtMgBr \gg PhMgBr. This order may be indicative of the importance of steric hindrance in the cleavage of the Si-C bond.

Organolithium reactions

Cleavage of both pentafluorophenyl groups in compound (I) was effected rapidly under mild conditions with MeLi or n-BuLi (Table 1). However, nucleophilic displacement of *para*-fluorines occurred predominantly when compound (I) reacted with t-BuLi. In view of the trend observed with Grignard cleavages it is reasonable to assume that the steric bulk of the t-BuLi lessens its ability to cleave the Si—C bond and shifts attack mainly to the relatively more accessible *para*-fluorine atoms.

$$(C_6F_5)_2SiMeH + 2 t-BuLi \rightarrow (p-t-BuC_6F_4)_2SiMeH + p-t-BuC_6F_4Si(t-Bu)MeH + 41\% 24\% C_6F_5Li + LiF$$

^{21%} When bis(*p*-tert-butyltetrafluorophenyl)methylsilane was reacted with MeLi, there was obtained upon derivatization with CO_2 an 86% yield of *p*-tert-butyltetrafluorobenzoic acid. To our knowledge there have been no tert-butyltetrafluorophenyl derivatives reported. Cleavage reactions of this type may have some synthetic value.

There was no evidence for any hydride displacement from silicon as occurs when many silicon hydrides are treated with Grignard reagents or organolithium compounds [8–10]. In cases where (pentafluorophenyl)trimethylsilane could be the product resulting from hydride displacement its absence was shown by GLC analysis prior to derivatization with $ClSiMe_3$. The pentafluorophenyl group, as expected, proved to be a much better leaving group than hydride.

Experimental

All reactions were carried out under an atmosphere of dry nitrogen in ovendried glassware which was assembled while hot and flushed with dry nitrogen prior to addition of the reagents. In the reactions listed in Table 1, Grignard or organolithium reagents were added by syringe to the stirred solution of the silane. Ether and THF were distilled from LiAlH₄. The molarities of alkyllithium and Grignard reagents were determined by the double-titration methods [11, 12]. GLC analyses were performed on an F and M model 500 Gas Chromatograph using either 10% DC-200 or LAC-446 liquid phase on Chromosorb W in 4' \times 1/4" columns. ¹H NMR and ¹⁹F NMR spectra were taken on about 20% solutions in CCl₄. ¹⁹F NMR chemical shifts are reported in ppm upfield (—) from trichlorofluoromethane internal reference.

Preparation of bis(pentafluorophenyl)methylsilane(I)

To C₆F₅Li (0.20 mole) in 400 ml Et₂O was added 11.5 g (0.10 mole) Cl₂ Si-MeH at -60°. After 3 h of warming to 0°, the reaction mixture was filtered (-30°). Ether was removed under reduced pressure. Distillation of the liquid residue gave compound (I), b.p. 106°/4 mm, n_D^{20} 1.4626 (31.8 g, 84%). Lit. [13, 14]: b.p. 94°/2 mm, n_D^{20} 1.4634; b.p. 70°/0.15 mm, n_D^{25} 1.4614.) The ¹H NMR spectrum, which has not been previously described, exhibited peaks at δ 0.94 ppm [doublet of pentets, $J(H, CH_3) = 4.2$ Hz, J(o-F, CH₃) = 1.2 Hz, 3 H], and δ 5.46 ppm [octet, $J(H, CH_3) \approx J(o$ -F, H) = 4.2 Hz, 1 H].

Preparation of (pentafluorophenyl) isopropylmethylsilane(V)

To 1.89 g (0.01 mole) of compound (I) in 23.3 ml Et₂ O at 0° was added 23.3 ml of 0.43 N (0.01 mole) i-PrMgCl in THF. After 3 h the reaction mixture was hydrolyzed with 5 ml of 0.1 N HCl. The Et₂O solution was washed with H₂O, dried over anhydrous MgSO₄ and distilled to give (pentafluorophenyl)isopropylmethylsilane, b.p. 92–93°/25 mm, n_D^{25} 1.4389 (1.93 g, 76%). The ¹H NMR spectrum showed peaks at δ 0.44 [doublet of triplets, $J(H, CH_3) = 4.2$ Hz, $J(o-F, CH_3) = 1.2$ Hz, 3 H], 1.12 (unsymmetrical broad peak, 7 H), and 4.42 ppm (multiplet, 1 H). IR: 2170 cm⁻¹ (Si–H); 1647, 1524 and 1475 cm⁻¹ (C₆ F₅). Molecular ion; *m/e* 254 (mol. wt. 254). (Found: C, 47.38; H, 4.25; F, 37.06. C₁₀H₁₁F₅Si calcd.: C, 47.24; H, 4.36; F, 37.36%.)

Reaction of tert-butyllithium with bis(pentafluorophenyl)methylsilane (I)

To 7.56 g (0.02 mole) of compound (I) in 150 ml of Et_2O at -78° was slowly added 36.7 ml of 1.09 N (0.04 mole) t-BuLi. After 1/2 h 4.34 g (0.04 mole) of ClSiMe₃ was added, and the mixture allowed to warm to room temperature. Distillation provided $C_6F_5SiMe_3$, b.p. 56–57°/9 mm (1.03 g, 21%). (Lit. [15], b.p. 60°/14 mm).

Also obtained was (*p*-tert-butyltetrafluorophenyl)tert-butylmethylsilane, b.p. 56–58°/0.08 mm, m.p. 34–35° (1.46 g, 24%). The ¹H NMR spectrum showed peaks at δ 0.43 [doublet of triplets, $J(H, CH_3) = 4.0$ Hz, J(o-F, $CH_3) = 1.2$ Hz, 3 H], 1.04 (singlet, 9 H), 1.53 [triplet, J(p-(CH_3)₃ C, o-F) = 2.2 Hz, 9 H], 4.34 ppm ppm [sextet, $J(H, CH_3) \simeq J(H, o$ -F) = 4.0 Hz, 1 H]. The ¹⁹F NMR indicated para orientation of the tert-butyl group by exhibiting an A₂B₂ pattern at -126.8 (2 F) and -138.0 ppm (2 F). IR: 2165 cm⁻¹ (Si–H); 1643, 1520, 1467 and 1439 cm⁻¹ (C₆ F₄). Molecular ion: m/e 306 (mol. wt. 306). (Found: C, 58.58; H, 6.99; F, 24.45. C₁₅H₂₂F₄Si calcd: C, 58.80; H, 7.24; F, 24.80%.)

Also isolated was bis(*p*-tert-butyltetrafluorophenyl)methylsilane (VIII), b.p. 123-125°/0.01 mm, m.p. 97-98.5° (3.7 g, 41%). The ¹H NMR spectrum showed peaks at δ 0.83 [doublet of pentets, $J(H, CH_3) = 4.0$ Hz, J(o-F, CH₃) = 1.2 Hz, 3 H], 1.52 (triplet, J(p-(CH₃)₃C, o-F) = 2.2 Hz, 18 H), and 5.23 ppm [octet, $J(H, CH_3) \approx J(H, o$ -F) = 4.0 Hz, 1 H]. The ¹⁹ F NMR indicated *para* orientation of the tert-butyl groups by an A₂ B₂ pattern at -128.5 (4 F) and -137.7 ppm (4 F) IR: 2190 cm⁻¹ (Si-H); 1642, and broad band between 1410 and 1500 cm⁻¹ (C₆ F₄) Molecular ion: m/e 454 (mol. wt. 454). (Found: C, 55.45; H, 4.86; F, 32.99. C₂₁H₂₂F₈Si calcd. C, 55.50; H, 4.88; F, 33.44%.)

Reaction of bis(p-tert-butyltetrafluorophenyl)methylsilane (VIII) with methyllithium

To 1.13 g (0.0025 mole) of bis(*p*-tert-butyltetrafluorophenyl)methylsilane in 30 ml of Et₂O at -50° was added 0.005 mole MeLi. At the end of 1 h the reaction mixture was poured over a large excess of freshly crushed dry ice. After warming to room temperature, about 30 ml of 1 *M* HCl was added. The ether layer was separated, washed with H₂O and extracted with NaHCO₃ solution. After acidification there was obtained *p*-tert-butyltetrafluorobenzoic acid, m.p. 126–127° (1.08 g, 86%). The ¹H NMR exhibited peaks at δ 1.53 [triplet, *J*(H, *o*-F) = 2.2 Hz, 9 H], and 12.2 ppm (broad singlet, 1 H). The ¹⁹F NMR showed an A₂B₂ pattern at -137.4 (2 F) and --138.7 ppm (2 F). IR: 3300-2500 cm⁻¹ (COOH); 1716 cm⁻¹ (C=O); 1642, 1453 cm⁻¹ (C₆ F₄). Molecular ion: m/e 250 (mol. wt. 250). (Found: C, 52.73; H, 4.08; F, 29.98. C₁₁H₁₀F₄O₂ calcd.: C, 52.81; H, 4.03; F, 30.37%.)

Acknowledgements

This research was supported largely by the National Science Foundation (GP-34632) and, in part, by the United States Air Force under Contract No. F33615-69-C-1046, Wright—Patterson Air Force Base, Ohio.

References

- 1 P. Morris, F.W.G. Fearon and H. Gilman, J. Organometal. Chem., 9 (1967) 427.
- 2 F.W.G. Fearon and H. Gilman, J. Organometal, Chem., 10 (1967) 409.
- 3 K. Shiina, T. Brennan and H. Gilman, J. Organometal. Chem., 11 (1968) 471.
- 4 M.R. Smith, Jr. and H. Gilman, J. Organometal. Chem., 37 (1972) 35.
- 5 C. Tamborski and E.J. Soloski, J. Organometal. Chem., 20 (1969) 245.
- 6 R.D. Howells and H. Gilman, unpublished studies.
- 7 F.W.G. Fearon and H. Gilman, J. Organometal. Chem., 10 (1967) 535.
- 8 H. Gilman and E.A. Zuech, J. Amer. Chem. Soc., 79 (1957) 4560.
- 9 H. Gilman and E.A. Zuech, J. Amer. Chem. Soc., 81 (1959) 5925.
- 10 C. Eaborn and R.W. Bott, in A.G. MacDiarmid (Ed.) Organometallic Compounds of the Group IV Elements, Vol. 1, Part 1, Dekker, New York, 1968.
- 11 H. Gilman and F.K. Cartledge, J. Organometal. Chem., 2 (1964) 447.
- 12 T. Vlismas and R.D. Parker, J. Organometal. Chem., 10 (1967) 193.
- 13 A.L. Klebanskii, Yu.A. Yuzhelevskii, E.G. Kagan and A.V. Kharlamova, Zh. Obshch. Khim., 36 (1966) 2222; Chem. Abstr., 66 (1967) 95125u.
- 14 T. Brennan and H. Gilman, J. Organometal. Chem., 16 (1969) 63.
- 15 M. Fild, O. Glemser and G. Christoph, Angew. Chem., Int. Ed. Engl. 3 (1964) 801.